If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+14z+34=0
a = 1; b = 14; c = +34;
Δ = b2-4ac
Δ = 142-4·1·34
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{15}}{2*1}=\frac{-14-2\sqrt{15}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{15}}{2*1}=\frac{-14+2\sqrt{15}}{2} $
| x/6-1.5=-20.7 | | 1/2(x)(x+2)=144 | | x-11(3)=x-11 | | r^2+8r=-15r | | x=(x+11)/3 | | 9u-34-2(3-8u)=0 | | 6/1÷y=2/7 | | 17=h-31 | | ∠B=x+93∘ | | -17-10x=-11x+9 | | (3z-2)^(2/5)=(8z)^(1/5) | | 2÷7y=6 | | 6/x=-x+7 | | -0.2=-20c | | 12z-5=11-8z | | 7−8b=-41b= | | 11-3x=x | | 2x=17.6 | | 3(x+9)=-1/2x+2 | | 27-9z/8=-z | | x=11-(3)x-11 | | 17.6=2x | | -7(x+4)+7=-21 | | (7x+5)+(6x-7)=90 | | 4/3y+4-5y=3 | | N=4-3×n | | 8m+(-5)=-33 | | (−8x−12)+(9x+4)=(−8x−12)+(9x+4) | | 24=6-2x | | x3=11+x(x-11) | | f+1/4=-7/2 | | x3=x-11 |